logo

AWS Course

course overview

download outline

Select Country and City to View dates & book now

Overview

This course is part of a collection called 'Building Modern Data Analytics Solutions on AWS', which consists of 4 courses. You have the option to book any of the individual courses separately. If you prefer to attend all 4 courses, you can book the combined course called Building Modern Data Analytics Solutions on AWS.

Overview

In this course, you will learn to build batch data analytics solutions using Amazon EMR, an enterprise-grade Apache Spark and Apache Hadoop managed service. You will learn how Amazon EMR integrates with open-source projects such as Apache Hive, Hue, and HBase, and with AWS services such as AWS Glue and AWS Lake Formation. The course addresses data collection, ingestion, cataloging, storage, and processing components in the context of Spark and Hadoop. You will learn to use EMR Notebooks to support both analytics and machine learning workloads. You will also learn to apply security, performance, and cost management best practices to the operation of Amazon EMR

Audience

This course is intended for:

  • Data platform engineers
  • Architects and operators who build and manage data analytics pipelines

Skills Gained

  • Compare the features and benefits of data warehouses, data lakes, and modern data architectures
  • Design and implement a batch data analytics solution
  • Identify and apply appropriate techniques, including compression, to optimize data storage
  • Select and deploy appropriate options to ingest, transform, and store data
  • Choose the appropriate instance and node types, clusters, auto scaling, and network topology for a particular business use case
  • Understand how data storage and processing affect the analysis and visualization mechanisms needed to gain actionable business insights
  • Secure data at rest and in transit
  • Monitor analytics workloads to identify and remediate problems
  • Apply cost management best practices

Prerequisites

Students with a minimum one-year experience managing open-source data frameworks such as Apache Spark or Apache Hadoop will benefit from this course.

  • We suggest the AWS Hadoop Fundamentals course for those that need a refresher on Apache Hadoop.

We recommend that attendees of this course have:

  • Completed either AWS Technical Essentials or Architecting on AWS
  • Completed either Building Data Lakes on AWS or Getting Started with AWS Glue

Outline

Module A: Overview of Data Analytics and the Data Pipeline

  • Data analytics use cases
  • Using the data pipeline for analytics

Module 1: Introduction to Amazon EMR

  • Using Amazon EMR in analytics solutions
  • Amazon EMR cluster architecture
  • Interactive Demo 1: Launching an Amazon EMR cluster
  • Cost management strategies

Module 2: Data Analytics Pipeline Using Amazon EMR: Ingestion and Storage

  • Storage optimization with Amazon EMR
  • Data ingestion techniques

Module 3: High-Performance Batch Data Analytics Using Apache Spark on Amazon EMR

  • Apache Spark on Amazon EMR use cases
  • Why Apache Spark on Amazon EMR
  • Spark concepts
  • Interactive Demo 2: Connect to an EMR cluster and perform Scala commands using the Spark shell
  • Transformation, processing, and analytics
  • Using notebooks with Amazon EMR
  • Practice Lab 1: Low-latency data analytics using Apache Spark on Amazon EMR

Module 4: Processing and Analyzing Batch Data with Amazon EMR and Apache Hive

  • Using Amazon EMR with Hive to process batch data
  • Transformation, processing, and analytics
  • Practice Lab 2: Batch data processing using Amazon EMR with Hive
  • Introduction to Apache HBase on Amazon EMR

Module 5: Serverless Data Processing

  • Serverless data processing, transformation, and analytics
  • Using AWS Glue with Amazon EMR workloads
  • Practice Lab 3: Orchestrate data processing in Spark using AWS Step Functions

Module 6: Security and Monitoring of Amazon EMR Clusters

  • Securing EMR clusters
  • Interactive Demo 3: Client-side encryption with EMRFS
  • Monitoring and troubleshooting Amazon EMR clusters
  • Demo: Reviewing Apache Spark cluster history

Module 7: Designing Batch Data Analytics Solutions

  • Batch data analytics use cases
  • Building Batch Data Analytics Solutions on AWS
  • Activity: Designing a batch data analytics workflow

Module B: Developing Modern Data Architectures on AWS

  • Modern data architectures

Certification

Labs - Please note: The labs for your AWS course will be delivered through AWS Builder labs. In order to access these labs you will need to have an Amazon BuilderID. You can set up your new Amazon account here. Please ensure that you have set up this Amazon BuilderID in advance of attending your class.

Courseware – Please note: In order to access your digital course materials you are required to set up a Gilmore account in advance of attending your course. To do this please follow this link.

Please also be aware that in order to access your materials and Labs it is important that your device and network should not restrict access to AWS or Vitalsource content. For that reason, AWS recommend NOT using a Corporate laptop with any security restrictions in place or the use of a VPN.

Talk to an expert

Thinking about Onsite?

If you need training for 3 or more people, you should ask us about onsite training. Putting aside the obvious location benefit, content can be customised to better meet your business objectives and more can be covered than in a public classroom. Its a cost effective option. One on one training can be delivered too, at reasonable rates.

Submit an enquiry from any page on this site and let us know you are interested in the requirements box, or simply mention it when we contact you.

All $ prices are in USD unless it’s a NZ or AU date

SPVC = Self Paced Virtual Class

LVC = Live Virtual Class

Please Note: All courses are availaible as Live Virtual Classes

Trusted by over 1/2 million students in 15 countries

Our clients have included prestigious national organisations such as Oxford University Press, multi-national private corporations such as JP Morgan and HSBC, as well as public sector institutions such as the Department of Defence and the Department of Health.